Fusion motion capture: a prototype system using inertial measurement units and GPS for the biomechanical analysis of ski racing
نویسندگان
چکیده
In this pilot study fusion motion capture (FMC) has been used to capture 3-D kinetics and kinematics of alpine ski racing. The new technology has overcome the technological difficulties associated with athlete performance monitoring in an alpine environment. FMC is a general term to describe motion capture when several different streams of data are fused to measure athlete motion. In this article inertial measurement units (IMU), global positioning system (GPS) pressure sensitive insoles, video and theodolite measurements have been combined. The core of the FMC is the fusion of IMU and GPS data. IMU may contain accelerometers, gyroscopes, magnetometers and a thermometer, and they track local orientation and acceleration of each limb segment of interest. GPS data are fused with local acceleration data to track the global trajectory of the athlete. Fusion integration algorithms designed by the authors [1] were used to improve the accuracy of the independent Kalman filter solutions provided by the vendors of both the GPS and IMU. The GPS accuracy was improved from a dilution of precision of 75m (meaning 50% of the measurements will be within 5m of the true value) to a maximum error of71.5m over the race course, while the IMU orientation error was reduced from over 201 to less than 51. The reader is invited to assess the validity of these results by comparing videos of the motion to the fusion motion capture output in the electronic version of this manuscript. Accuracy in laboratory situations has been validated, [2,3] but because such systems are becoming more popular, this system needs to be validated on the snow. As more accurate dual frequency GPS systems become less expensive this type of system will become more accurate and affordable. A biomechanical analysis was undertaken of a New Zealand Alpine Ski Racing Team member negotiating a 10-gate giant slalom course over 300m in length. The abundant data in the results were used to create new tools for measuring alpine ski racing technique, such as colour-coded force vector analysis. The new parameters introduced in this article, such as effective inclination and ground reaction force power, are independent of the stylistic constraints often imposed by the coach or athlete. Two ski runs have been compared. Although the difference between the two run times was only 0.14 s or 1%, FMC and force vector analysis were able to
منابع مشابه
A Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)
This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...
متن کامل3d Measurement of Lower Limb Kinematics in Alpine Ski Racing Using Inertial Sensors
INTRODUCTION: In alpine skiing monitoring the 3D segment kinematics is crucial to better understanding the injury risk factors and performance aspects. 3D camcorders have been primarily used to evaluate segment kinematics. While these systems allow valid measurement, their complexity limits their use to research applications. Alternatively, wearable systems fusing inertial measurement units (IM...
متن کاملPerformance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-noising method
Accuracy of inertial navigation system (INS) is limited by inertial sensors imperfections. Before using inertial sensors signals in the data fusion algorithm, noise removal method should be performed, in which, wavelet decomposition method is used. In this method the raw data is decomposed into high and low frequency data sets. In this study, wavelet multi-level resolution analysis (WMRA) techn...
متن کاملIntegration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment
Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...
متن کاملA Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation
In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...
متن کامل